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Introduction
The purpose of this report is

to argue for an open system for ranking sports teams,
to review the history of ranking systems, and
to document a particular open method for ranking sports teams against each other.

In order to do this extensive use of mathematics is used, which might make the text more difficult to
read, but ensures the method is well documented and reproducible by others, who might want to use it
or derive another ranking method from it. The report is, on the other hand, also more detailed than a
”typical” scientific paper and discusses details, which in a scientific paper intended for publication
would be omitted.

We will in this report focus on NCAA 1-A football, but the methods described here are very general
and can be applied to most other sports with only minor modifications.

Predictive vs. Earned Ranking Methods

In general most ranking systems fall in one of the following two categories: predictive or earned
rankings. The goal of an earned ranking is to rank the teams according to their past performance in the
season in order to provide a method for selecting either a champ or a set of teams that should
participate in a playoff (or bowl games). The goal of a predictive ranking method, on the other hand, is
to provide the best possible prediction of the outcome of a future game between two teams.

In an earned system objective and well publicized criteria should be used to rank the teams, like who
won or the score difference or a combination of both. By using well defined criteria for the ranking
then teams know exactly what the consequences of a win or at loss will be. This is done in most
football conferences to select the conference champion or at least the two teams selected for a
championship game. In general an earned ranking system allocates a number (often called the power
ranking), which is used the order teams in a linear sequence.

Most systems found on the WWW is predictive, even many of the BCS systems. In order to make a
predictive system as accurate as possible it is allowed to include any information, which is deemed
useful, like the strength of the quarterback, yards earned, number of fumbles etc. In particular it is very
common to put more weight on recent games than older games. This allows a more precise
extrapolation the next weeks games. In a more advanced predictive system the teams are not
necessarily linearly ordered. One can easily imagine situations, where a good predictive system will



predict, that A beats B, B beats C, but C beats A. This is not possible in a pure earned system.

Unfortunately most WWW ranking systems are a strange mix of the two types of systems described
here. The BCS ranking, that determines which teams have earned the right to play in the various
bowls, in particular the bowl determining the national championship, should be a pure earned ranking
system,. But may, if not most, of the BCS systems seem to be predictive. It is even so bad, that a
particular web site ranks the BCS systems according to how well they predict next weeks games!

The method described below are all intended as earned systems and now efforts are spent on trying to
optimize for predictive capabilities.

Open vs. Closed Methods
Currently the Bowl Championship Series (BCS) system  cite: BCS is based on 4 components, 1) 2
subjective polls by coaches and journalists, b) 8 computer programs, c) a well defined, but primitive,
method for calculating the strength of schedule, and 4) the number of losses of each team.

Here we will be concern ourselves with the 8 BCS computer based methods for ranking the teams.

Billingsley  cite: Billingsley .
Dunkel  cite: Dunkel .
Anderson & Hester / Seattle Times  cite: Seattle Times 
Massey  cite: Massey 
Matthews  cite: Matthews 
The New York Times  cite: NYT 
Rothman  cite: Rothman (public)
Sagarin  cite: sagarin 

Of all these systems only Rothman offers the code to others. However, Massey has a fairly detailed
description of his system so it should be possible to recreate his rankings. Since all the other systems
seem to be well guarded secrets it is not possible for others to check the calculations, or try to estimate
what effect wins or losses in the next weeks will have. It is especially problematic in the case of Jeff
Sagarin, who is making a living of publishing ratings for various sports in USA Today. Since Mr.
Sagarin has an economical advantage of keeping his system proprietary, it will be very difficult to
obtain a detailed description or the actual source text of his system.

This secrecy hurts the computer rankings tremendously, since they create the impression that they are
un-understandable and unfair and rewards ”running up the score”.

It is also a very uncommon situation. In other sports, where rankings play an important role (chess,
golf, tennis, etc.) the ranking method is completely public and can be checked by any interested person.

I will therefore suggest, that the current system is replaced with an open system based on publicly
accessible code with a detailed mathematical description. Ideally the whole package should be
available for download from the BCS WWW site, so coaches, players, journalists and fans can perform
the rankings themselves. The criteria the teams should be ranked on should be well published and
should be quantifiable in terms of either simple formulas or tables.



For this reason I have chosen to give a detailed report on the ranking system I use. As will be seen, it is
based on the work of others. It does, however, contain a few original, minor ideas.

I will also propose, that the NCAA should be responsible for the WWW posting of all NCAA results
in a standard ASCII based format, that can be used by everybody ranking sports teams.

An overview of ranking methods

Specialized Tournament Systems
Often a ranking between teams is obtained by letting them play in tournaments with the purpose of
either establishing a ranking between them or at least define ”the best team”. This tournament can
either be stretched over the whole season or, more commonly, is used in a playoff at the end of the
season.

Round Robin System
All teams in the tournament play each other and the ranking is determined by the number of points
each team accumulates (see the section on accumulative point systems). This is a very ”fair” system,
but requires a large amount of games.

Cup System
The tournament is played in ”rounds”. Only winners are allowed to play in the next round. Eventually
only one team is left and is declared the winner. The theme can be varied by introducing a losers
bracket, so a team is only eliminated after two loses. This is a very popular system, since it will find an
undisputed ”best” team using the least amount of games. However, due to the unavoidable fluctuations
in performance of each team from game to game it happens very often, that a better teams looses a
match to an inferior opponent and is then eliminated. This is not fair from a ranking point of view, but
has a lot of appeal from a spectator point of view.

Monrad System
The Monrad system is a very interesting variation of the cup system, which to my knowledge is only
used on a regular basis in chess tournaments. In the first round all teams are paired randomly. The
winner gets 1 point and the looser zero. In each successive round all teams with the same number of
points are paired randomly (except that teams which earlier have played each other can not be paired if
there are other pairing possibilities). This system has the advantage, that all teams keep playing, in
contrast to the cup system, and as the season (or tournament) advances teams with equal strength will
be meeting each other. There are no limitations to the number of rounds that can be played, but
eventually teams have to be paired if they have similar, but not necessarily identical, number of points.
The team with the largest number of points after a predefined set of rounds is the winner.

This system would be ideally suited for NCAA football, if only tradition and logistics would not
interfere. Early in the season teams would play 5-6 Monrad games within their conference and the rest
of the season they would be paired nationally, but with a pairing preference for teams geographically
close. This would result in some very exciting games in November and would create optimally
matched bowl games.



Accumulative Point Systems
Most sports use ranking systems based on the idea, that for each match or tournament the team (or
player) acquires a certain number of points depending on their performance and the teams ranking is
based on the total number of point they have accumulated during the season. If several teams have the
same number of points additional objective criteria are used, like winner of mutual game or
accumulated score difference.

In most soccer leagues the winning team gets 2 (or 3) points and the looser none and each team gets 1
point for a tie. If all teams play each other (round robin as described above) this provides a very simple
and effective method for evaluating the integrated performance of each team. Typical sizes of leagues
range from 6 to 24. Usually the best teams from a league will move up in a higher league next season
and the lowest ranked teams will be moved to a lower league. The winner of the highest league will be
the overall winner.

Golf and tennis are using systems where each player accumulates points based on their placement in
each tournament according to published tables. Prestigious tournaments will provide more points and
small local tournament will of course provide less points. Usually the points are accumulated over a
sliding time interval of one year.

The advantage of the accumulative point system is their simplicity. It is easy for each team or the
spectators to figure out their accumulated score and therefore their ranking. All participants know what
they gain or loose by winning or loosing a game. The disadvantage is, that the point allocation,
especially in tournaments for large systems like in golf and tennis, becomes somewhat arbitrary and not
based on the actual strength of the participants. It is also sometimes possible to rake up a lot of points
by carefully selecting weak tournaments or by playing a large amount of tournaments.

Elo Systems
The Elo rating system was first used by the International Chess Federation in 1970 to rank chess
players. The system was proposed by Arpad E. Elo. It is partly based on earlier work done by Anton
Hoesslinger. The official description of the system as it is used in chess can be found at
 cite: EloUSCF . Jones has given a nice overview of the system in  cite: RoyJones .

The basic idea in the system is to continuously change a players rating Rp based on whether she
performs better or worse than expected in tournaments or matches. For a new player with a total of N
matches, where N ⊢ Ncut Ncut π 20 the rating Rp is calculated as

Rp π �Rc � γ ϖ
Nw ∯ Nl

N

where �Rc � is the arithmetric average of the competitor’s ratings at the time of the match, Nw and Nl is
the number of wins and losses, respectively, and ϖ π 400 is an initial scale factor. This is the basic
Ingo system named after the place of origin, Ingolstadt in Germany, of it’s inventor Anton Hoesslinger.

Elo’s important improvement to this system was to introduce the Win Expectancy Function We, which
is defined as



We�τR π
1

1 γ 10∯

τR
ϖ

where

τR π Rp ∯ Rc

For a tournament with M matches played by a player with a rating Rp the new ranking Rp,new after the
tournament becomes

Rp,new π Rp γ K�S ∯ ω iπ1
M We,i�τRi

where the score is defined as (Nt is the number of tied games)

S π Nw γ
1
2 Nt

and the sum i runs over each of the games the player played in the tournament. K is in principle a
constant, but is in reality varied slightly depending on the rating of the player.

The Elo system seem especially well suited to sports with a large number of participants (ρ 10,000),
where methods based on linear algebra have problems due to memory limitations in computers.
However, the idea of introducing the probability function We is very powerful and can be used in other
ranking system. In particular Massey has used part of these ideas in his very interesting BCS ranking
system.

Global Optimization Systems

Ordinal Ranking
Select a ranking that minimizes the number of violations. A violation is a game where a team with a
lower ranking defeats a team with a higher ranking.

.......

The Ranking Model
Let us consider a set of teams T consisting of NT teams playing a total of NG games between each
other. Depending on the nature of the sport the term ”team” can refer to either an individual (chess,
boxing, singles tennis etc.) or a set of individuals (football, baseball, basketball, doubles tennis etc.).
We will only consider games consisting of a set of two teams, but the method outlined in this paper can
easily be generalized to consider games consisting of n ρ 2 teams (common in track and field,
swimming etc.).



In game g (g π 1, ...,NG) the home team is denoted th (h π 1, ...,NT) and the away team is ta
(a π 1, ...,NT). In this game the home team obtains a score of Sh and the away team a score of Sa. The
game is played at time Tg within a given season y. Results of games are assumed to be available from
a total of Ny seasons (y π 1, ...,Ny). The score of the winner is Sw and the score of the looser is Sl. We
will assume for simplicity that the winner of a game is the team with the larger score. The margin of
victory or point spread τS can be defined in two different ways.

τSha π Sh ∯ Sa

or

τSwl π Sw ∯ Sl

τSwl will always be non-negative, whereas τSha will be positive if the home team wins and negative if
the away team wins. The relation between them is

τSha π
τSwl if Sh ⊣ Sa

∯τSwl if Sh ] Sa

Basic Model Assumptions
The assumptions of the current ranking model are:

1. Only games played between two teams th and ta in the set T are considered (th, ta ∥ T).
2. Only games played within a given season y are considered, except for rankings performed early in

the season, where results of games from season y ∯ 1 can be used.
3. The outcome or result Rg�Sh,Sa of game g is a real function depending only on the final scores

Sh and Sa.
4. The result Rg does not depend on the time of the game Tg within the season nor on any other

variable related to the game.
5. The ranking of the teams in the set will be accomplished by allocating the i’th team ti a strength or

power rating ri,where ri, i π 1, ...,NT is a set of real numbers . The teams will then be ranked
(π ordered) according to the value of their strength.

6. The result Rg of game g is a measurement of the strengths rh and ra of the two teams with an
associated measurement error ℉g.

In the following the discussion will be based on examples from football, but the formalism is
completely general and could be used for any binary game resulting in a final set of scores. It follows
from assumptions 4, that the current ranking method does not take into account other ”unofficial”
statistics from a game, like half time score, yardage gained or lost, fumbles etc. While these variables
might very well be of importance for a prediction algorithm, we consider them irrelevant and unfair to
use for a ranking algorithm, which purpose is to evaluate which team is the best or which set of teams



are the best. In this latter case the teams need to know exactly what they are being evaluated on.

The Game Outcome Function
Let us now consider in more detail the result Rg of game g. As stated in assumption 3 the result
Rg�Sh,Sa� is a real function of the two scores Sh and Sa. Rg will be considered a measurement of the
strength of the two teams. As usual with any physical measurement the result Rg does not provide an
exact measurement of the strengths of the two team, but an uncertainty ℉g is associated with each
measurement g. There is, unfortunately, not a universally accepted result function. Some commonly
used functions are discussed below.

Win-Loss system (WL)
It only matters which team wins (π which team has the higher score), but the actual scores do not
matter.

Rg
WL�Sh,Sa� π

1 if Sh ρ Sa

0 if Sh π Sa

∯1 if Sh ] Sa

This system is often referred to as the JWB system (Just Win Baby). Effectively this is how many fans
view the game outcome, since the only thing that matters is whether you win or not. Not how you win
or by how much.

Score Difference system (SD)
The result of the game is defined as the difference between the scores of the two teams:

Rg
SD�Sh,Sa� π Sh ∯ Sa π τSha

In football this system is often referred to as the BOMB Index (Bowden - Osborne Memorial Blowout
Index), since it is perceived, that Florida State and Nebraska used to run up the score against weak
opponents, which will help their ranking in this system.

Truncated Score Difference system (TSD)
A modification the SD system, where the score difference is truncated at some value τSmax in order to
avoid to heavy an emphasis on games, where one team ”runs up” the score:



Rg
TSD�Sh,Sa |τSmax� ⊟ τSt ⊟

τSmax if τSha ⊣ τSmax

τSha if |τSha | ] τSmax

∯τSmax if τSha ⊢ ∯τSmax

In football typical values of maximum point spread τSmax ranges from 21-35. τSt is called the
truncated point spread. Please note that the game outcome now also depends on the game-independent
parameter τSmax.

A mathematically more elegant way of providing this cutoff is to use the hyperbolic tangent function

Rg
TSDT�Sh,Sa |τSmax� π τSmax tanh τSha

τSmax

with

Rg
TSDT

≠ τSha for |τSha | ⊨ τSmax

and

Rg
TSDT ⇕ τSmax for τSha ⇕ ∻

Simple Hybrid WL-SD system
Since both the pure WL and SD system tend to favor a particular, but maybe extreme, view of the
game outcome, other systems have introduced a simple linear combination of the two systems:

Rg
WLSD�Sh,Sa |Bw� π

Bw γ τSha if Sh ρ Sa

0 if Sh π Sa

∯Bw γ τSha if Sh ] Sa

In football typical values for the ”bonus” Bw for a win is 50-100. For Bw π 0 the system reduces to the
SD system and for Bw ⊩ |τS | it is identical to the WL system.

Score Ratio system (SR)
Instead of forming the difference between the score, as in the SD system, the ratio between the scores
is the game outcome.

Rg
SR�Sh,Sa� π

τSha
Sw

In this case ∯1 ⊢ Rg
SR

⊢ 1, with |Rg
SR | π 1 if the loosing team does not score any points (a shot-out).



The rare case of Sh π Sa π 0 is not defined in this system and it can therefore not be used in sports,
where this result is possible.

Linear Win - Difference - Ratio system (LWDR)
All the above mentioned methods for evaluating the outcome of a game have their virtues. It is
therefore natural to form a outcome function, that combines all of them. The simplest way of doing this
is by forming a linear combination of the three types of outcome:

Rg
LWDR�Sh,Sa |Bw,τSmax,Br� π

Bw γ τSt γ Br
τSha
Sw

if Sh ρ Sa

0 if Sh π Sa

∯Bw γ τSt γ Br
τSha
Sw

if Sh ] Sa

There are three parameters in this approach: 1) the win bonus Bw, 2) the maximum point spread τSmax,
and 3) the scoring ratio weight factor Br. They are, however, not independent since a scaling of all of
them will lead to the same ranking. Since the sum of the three parameters is equal to the maximum
value of the game outcome function Rg

max, it is convenient to constrain the three parameters by
choosing Rg

max to have a convenient value like 100.

Bw γ τSmax γ Br π Rmax

In this paper we will choose the following values

Bw π 50 τSmax π 25 Br π 25

A subsequent paper will discuss techniques for choosing the most optimal values for �Bw,τSmax,Br�.

The Outcome Prediction Function

The outcome prediction function Pg�rh, ra |ϖ j� estimates the outcome of a game g between the two
teams th and ta based on their strength rating rh and ra, respectively. In addition P can depend on a
number of additional parameters, depending on the choice of game outcome function, Rg. In the case
the WDR game outcome function Rg

WDR is used the parameter vector is ϖι π �Bw,τSmax,Br�. In
addition other parameters, like the home field advantage Bh, can be added to the parameter set, if
needed. Actual choices of P will be discussed later in this paper, but first we will outline the method
for determining the strength ratings, ri, independent of the functional expression of P.

During a season with Ng games a total of Ng measurements of the Nt strength ratings ri is performed
and we want to determine the vector rι so the difference between the game result Rg and the prediction
(or hypothesis) Pg is as small as possible for as many games as possible. This can be done in a number
of ways. We choose to minimize the sum of the square of the difference between the game result and
the prediction. This is the so-called Least Squares Method.



minimize: ℓ2�rι� π ∮gπ1
Ng Rg�ϖι� ∯ Pg�rι | ϖι�

℉g

2

The measurement error ℉g for each game will be discussed later.

Other methods are based on the maximum norm ......

Linear chi-square method
If we furthermore assume, that the outcome prediction function depends linearly on the strength
ratings, ri, we can use the general framework for linear least squares fits. This is a very strong
assumption and a later paper will discuss non-linear approaches. We will furthermore assume Pg does
not depend on ϖι, but only depends on the relative difference between the strength ratings of the two
teams participating in the game

Pg π rh ∯ ra π ∮
tπ1

Nt

ϱgtrt where ϱgt π

1 if t π h
∯1 if t π a
0 if t ⊞ h,a

This reduces the problem to the minimization of

ℓ2�rι� π ∮
gπ1

Ng Rg�ϖι� ∯∮ tπ1
Nt ϱgtrt

℉g

2

Following the standard ℓ2 nomenclature we introduce the design matrix A with elements

Agt π
ϱgt
℉g

the weighted result vector b with elements

bg π
Rg
℉g

and the strength parameter vector r. In matrix notation the problem can now be written as

ℓ2 π |A ⌌ r ∯ b |2

where the | |2 symbol indicates the Euclidean norm in the vector space spanned by all the games.

Single Value Decomposition Solution
Using the Single Value Decomposition algorithm the vector r, that minimizes ℓ2 is



rt π ∮
gπ1

Ng Utg bg
vg

Vtg

where U, V are the SVD matrices and v is the single value vector defined as

Agt π ∮
iπ1

Nt

vgUgiVti

or

A π U ⌌ �diag�vg�� ⌌ VT

We obtain the U and V matrices and the v vector using the routines described in Press et al. [1992].

The advantage of using the linear ℓ2 method is speed, since it only takes a few seconds on a normal
PC to solve for the rankings. The SVD algorithm is the standard tool for solving linear ℓ2 problems
due to its robustness. For further details see press et al. [1992].

The Game Weight Factors
The game weight factors, defined as

wg π
1
℉g

2

provide the option to let various games influence the rankings differently. It is very common in other
ranking models to make the weights time-dependent

wg�t� ∺ exp�T ∯ tg�

where T is the time where the ranking is performed. This will put more emphasis on games played
recently. This method is, however, more appropriate for prediction model than for ranking models. The
current ranking model does not incorporate any time-dependence in the weights, with the exception of
the initial period as explained later.

If two teams of very similar strength are playing each other, we consider the outcome of this game a
”good” measurement of the relative strengths of the two teams. In contrast we consider mis-matched
games between opponents with very different strengths as ”bad” measurements. In mathematical terms
this implies, that we will associate a larger weight wg (or equivalently a smaller uncertainty ℉g) to
games between teams where the difference between the rankings rh and ra is small. This can,
however, only be done in an iterative procedure, since the rankings rh and ra are not initially. We are



therefore using the following method:

Initial values of the ranking vector r 1 are determined by assuming wg
�1 π 1. Afterwards the ℓ2

system is solved again, but this time with the following weights

wg
�2 π exp ∯

|rh ∯ ra |
ϖw

where ϖw is determined from the condition

exp ∯
max�rt ∯ min�rt

ϖw
π

1
Ϝw

2

In other words, we consider a game between the best and the worst team to have an measurement
error Ϝw times larger than when two completely equal teams play. Ϝw is a free parameter in this
ranking model. The numerical examples show later have used the value Ϝw π 3.

Early season rankings
Early in the season, when only few games have been played, the design matrix A has a rank smaller
than Nt. This has the effect, that the relative ranking of many sub-sets of teams are undetermined. For
NCAA 1-A division football teams, where Nt π 112, the number of independent sub-sets of teams as
function of number of the number of weeks played is shown in the table below (based on the 1996-98
seasons):

Number of independent sets
week 1996 1997 1998

1 109 104 104
2 78 78 65
3 36 36 18
4 3 2 1
5 1 1 1

Only after 5 playing weeks will it be possible to obtain a solution, where all teams are ”connected”. For
NCAA 1-A football the onset of full connectiveness seems empirically to coincide with a condition,
that the average number of games per team is 2.5 - 3.0 or a total of 139 to 170 games between the 112
teams (only games where both teams are division 1-A counts).

It is, however, often required to obtain a ranking early in the season before the full connectedness
haven been obtained. Since we are requiring, that only the final results of games can be used in the
ranking this can only be obtained by using game results from the previous season(s). So early in the
season results from the previous season are also included in the ranking, but with a decreasing weight
factor. The total weight factor on each game is



wtot π wgws

where wg is defined above and

ws π

1 for games in the current season

max 0, 1 ∯
�Ngt �

Rcut

2
for games in the previous season

where �Ngt � is the average number of games played by each team and Rcut π 4.5 represents a cut-off
value for the inclusion of previous seasons games.

Input
Currently it is cumbersome to obtain NCAA results, especially for the lower divisions. I would
therefore like to propose, that NCAA post results of all NCAA games (football, basketball, tennis, etc.)
in a standard ASCII based format, that can be used directly a input to ranking programs.

For each sport two files should be created for each season: a team file and a game file.

Team File
The Team file should contain the following information on each team:
1. Team index. A unique integer index running from 0
2. Official Team Name. (Tennessee, James Madison, etc.)
3. Conference Name. (The Southeastern Conference, The Atlantic Ten Conference, etc.)
4. Division. (1-A, 1-AA, etc.)

The format of the file should be ( generic C printf statement ):

fprintf( TeamFile, ” %5d %-25s %-35s %-25s\n”,

Index, Name, Conference, Division );

Game File
The Game file should contain the following information on each game:

1. Date
2. Away team name
3. Away team score
4. Home team name
5. Home team score
6. Away team index
7. Home team index
8. Playing field code ( π 1 if home team was home (default), π 2 if the game was a bowl or play-off



game, and π 3 if game for some other reason was played on a neutral field)
The format of the file should be ( generic C printf statement ):

fprintf( GameFile,

” %4d %2d %2d %-25s %3d - %-25s %3d |%5d %5d %1d\n”

Year, Month, Day,

AwayTeamName, AwayTeamScore,

HomeTeamName, HomeTeamScore,

AwayTeamIndex, HomeTeamIndex, FieldCode );

Summary
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